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Double Dipping: Using the same data for two tasks, such as: 
1. Generating and testing a null hypothesis. 
2. Fitting and evaluating a model. 
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Approach 1: develop specialized procedures that account for double dipping



R package and tutorials: https://anna-neufeld.github.io/treevalues/
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https://anna-neufeld.github.io/treevalues/
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3

Feature 1 Feature 2

Obs. 1 12 6

Obs. 2 31 8

Obs. 3 11 31

Obs. 4 22 34



Approach 2: avoid double dipping entirely via sample splitting

3

Feature 1 Feature 2

Obs. 1 12 6

Obs. 2 31 8

Obs. 3 11 31

Obs. 4 22 34

Feature 1 Feature 2

Obs. 1 12 6

Obs. 2 31 8

Feature 1 Feature 2

Obs. 3 11 31

Obs. 4 22 34

Train

Test



Approach 2: avoid double dipping entirely via sample splitting

Select hypothesis. 

3

Feature 1 Feature 2

Obs. 1 12 6

Obs. 2 31 8

Obs. 3 11 31

Obs. 4 22 34

Feature 1 Feature 2

Obs. 1 12 6

Obs. 2 31 8

Feature 1 Feature 2

Obs. 3 11 31

Obs. 4 22 34

Train

Test



Approach 2: avoid double dipping entirely via sample splitting

Select hypothesis. 

Test hypothesis.

3

Feature 1 Feature 2

Obs. 1 12 6

Obs. 2 31 8

Obs. 3 11 31

Obs. 4 22 34

Feature 1 Feature 2

Obs. 1 12 6

Obs. 2 31 8

Feature 1 Feature 2

Obs. 3 11 31

Obs. 4 22 34

Train

Test



3

Fit model. 
Feature 1 Feature 2

Obs. 1 12 6

Obs. 2 31 8

Obs. 3 11 31

Obs. 4 22 34

Feature 1 Feature 2

Obs. 1 12 6

Obs. 2 31 8

Feature 1 Feature 2

Obs. 3 11 31

Obs. 4 22 34

Train

Test

Approach 2: avoid double dipping entirely via sample splitting



3

Fit model. 

Evaluate model.
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Outline 

1. Motivation: settings where sample splitting doesn’t work 

2. Poisson thinning 

3. Data thinning 

4. Application to single-cell RNA sequencing data 

5. Ongoing work
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Sample splitting cannot be used for example 1

6

All Test

Step 1: split 
observations into 
train/test.

Step 2: cluster 
the training set. 

Step 3: test for 
difference in means 
using test set. 

Step 2.5: assign 
labels to observations 
in test set. 

Gao, Bien, and Witten, 2022 (JASA).

 !.p < 10−6

3-nn classification
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Fu and Perry, 2020 (JCGS).  
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observations 
into train/test.

Step 2: cluster 
the training set. 
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labels to observations 
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Other situations in which sample splitting is not a good option

1. Fixed-X regression settings. 

2. Non-IID data. 

3. Data with outliers or 
influential points.  
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Poisson thinning is useful in the analysis of single-cell RNA sequencing 
data
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Gaussian thinning algorithm  
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X(1) ⊥⊥ X(2)
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Our recipe extends naturally to splitting into M>2 folds 



Data thinning is a simple alternative to sample splitting that can be 
used in a variety of settings

R package and tutorials: https://anna-neufeld.github.io/datathin/
28

Project 3

https://anna-neufeld.github.io/datathin/
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1. Motivation: settings where sample splitting doesn’t work 

2. Poisson thinning 

3. Data thinning 

4. Application to single-cell RNA sequencing data 

5. Ongoing work



How can we validate the results of clustering? 

30



How can we validate the results of clustering? 

30



How can we validate the results of clustering? 

•Step 1: Cluster cells. 

30



How can we validate the results of clustering? 

•Step 1: Cluster cells. 

30



How can we validate the results of clustering? 

•Step 1: Cluster cells. 

• Step 2: Treat clusters as truth. 
Do 5-fold cross validation with 
SVM. 

30



How can we validate the results of clustering? 

•Step 1: Cluster cells. 

• Step 2: Treat clusters as truth. 
Do 5-fold cross validation with 
SVM. 

30



How can we validate the results of clustering? 

•Step 1: Cluster cells. 

• Step 2: Treat clusters as truth. 
Do 5-fold cross validation with 
SVM. 

• Step 3: Compare clusters to 
SVM predictions.

30



How can we validate the results of clustering? 

•Step 1: Cluster cells. 

• Step 2: Treat clusters as truth. 
Do 5-fold cross validation with 
SVM. 

• Step 3: Compare clusters to 
SVM predictions.

30



31

This cross validation procedure double dips



31

This cross validation procedure double dips



31

This cross validation procedure double dips

SVM gets 96% accuracy on test set, despite the fact that clusters are not “real”. 
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Data thinning provides a simple alternative

X(1)

Adjusted Rand Index ≈ 0.01
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Negative binomial data thinning is useful in the analysis of single-cell 
RNA sequencing data

34

Arxiv preprint will be posted soon! 

Project 4
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4. Application to single-cell RNA sequencing data 

5. Ongoing work
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Limited to convolution-closed distributions? 
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Draw  from . (X(1), X(2)) Gx,θ

We observe realization  from .x X ∼ Pθ

Generalized thinning with non-additive decompositions 

Key idea: If  is sufficient for  

in the joint of , then  does not 

depend on .  

X = T(X′ , X′ ′ ) θ
(X′ , X′ ′ ) Gx,θ

θ
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We are working on additional extensions to Project 3
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