Data thinning to overcome double dipping

Anna Neufeld

Final Exam
May 9, 2023

What is double dipping?

Classical statistical methods assume that we only ever test pre-specified hypotheses about pre-specified models.

What is double dipping?

Classical statistical methods assume that we only ever test pre-specified hypotheses about pre-specified models.

In reality, we explore our data, fit several models, evaluate these models, select our favorite model, then test hypotheses about this model.

What is double dipping?

Classical statistical methods assume that we only ever test pre-specified hypotheses about pre-specified models.

In reality, we explore our data, fit several models, evaluate these models, select our favorite model, then test hypotheses about this model.

Double Dipping: Using the same data for two tasks, such as:

1. Generating and testing a null hypothesis.
2. Fitting and evaluating a model.

Approach 1: develop specialized procedures that account for double dipping

Approach 1: develop specialized procedures that account for double dipping

Project 1

Journal of Machine Learning Research 23 (2022) 1-43

Tree-Values: Selective Inference for Regression Trees
Anna C. Neufeld
Department of Statistics
University of Washington
Seattle, WA 98195, USA
Lucy L. Gao
Department of Statistics
University of British Columbia
Vancouver, British Columbia, V6T 1Z4, Canada
Daniela M. Witten
DWITTEN@UW.EDU
Departments of Statistics and Biostatistics
University of Washington
Seattle, WA 98195, USA

R package and tutorials: https://anna-neufeld.github.io/treevalues/

Approach 2: avoid double dipping entirely via sample splitting

	Feature 1	Feature 2
Obs. 1	12	6
Obs. 2	31	8
Obs. 3	11	31
Obs. 4	22	34

Approach 2: avoid double dipping entirely via sample splitting

			Train		
				Feature 1	Feature 2
			Obs. 1	12	6
	Feature 1	Feature 2			
Obs. 1	12	6	Obs. 2	31	8
Obs. 2	31	8			
Obs. 3	11	31	Test		
Obs. 4	22	34		Feature 1	Feature 2
			Obs. 3	11	31
			Obs. 4	22	34

Approach 2: avoid double dipping entirely via sample splitting

Approach 2: avoid double dipping entirely via sample splitting

Approach 2: avoid double dipping entirely via sample splitting

Approach 2: avoid double dipping entirely via sample splitting

Outline

1. Motivation: settings where sample splitting doesn't work
2. Poisson thinning
3. Data thinning
4. Application to single-cell RNA sequencing data
5. Ongoing work

Example 1: using the same data to generate and test a hypothesis

Feature 1

Example 1: using the same data to generate and test a hypothesis

Feature 1
Step 1: cluster the observations.

Example 1: using the same data to generate and test a hypothesis

Step 1: cluster the observations.

Generate H_{0} :"the expected value of Feature 2 is the same between red observations and the blue observations."

Example 1: using the same data to generate and test a hypothesis

$p<10^{-10}$
Step 2: test H_{0} with a t-test.

Sample splitting cannot be used for example 1

Sample splitting cannot be used for example 1

> Step 1: split observations into train/test.

Sample splitting cannot be used for example 1

> Step 1: split observations into train/test.

Step 2: cluster the training set.

Sample splitting cannot be used for example 1

> Step 1: split observations into train/test.

Step 2: cluster the training set.

Step 3: test for difference in means using test set.

Sample splitting cannot be used for example 1

> Step 1: split observations into train/test.

Step 2.5: assign labels to observations in test set.

Step 3: test for difference in means using test set.

Sample splitting cannot be used for example 1

Sample splitting cannot be used for example 1

Sample splitting cannot be used for example 1

Gao, Bien, and Witten, 2022 (JASA).

Example 2: using the same data to fit and evaluate a model

Example 2: using the same data to fit and evaluate a model

Goal: how many clusters are in this data?

Example 2: using the same data to fit and evaluate a model

Feature 1

Goal: how many clusters are in this data?

For several values of k :
Step 1: fit a model with k clusters.

Step 2: evaluate model using a loss function.

Example 2: using the same data to fit and evaluate a model

Feature 1

Goal: how many clusters are in this data?

For several values of k :
Step 1: fit a model with k clusters.

Step 2: evaluate model using a loss function.

Example 2: using the same data to fit and evaluate a model

Goal: how many clusters are in this data?

For several values of k :
Step 1: fit a model with k clusters.

Step 2: evaluate model using a loss function.

Sample splitting cannot be used for example 2

Sample splitting cannot be used for example 2

Step 1: split observations into train/test.

Sample splitting cannot be used for example 2

Step 1: split observations Step 2: cluster the training set.

Sample splitting cannot be used for example 2

Step 1: split observations into train/test.

Step 2: cluster

 the training set.
Step 3:

evaluate clusters using test set.

Sample splitting cannot be used for example 2

Step 1: split observations into train/test.

Step 2: cluster the training set.

Step 2.5: assign
labels to observations in test set.

Step 3:

evaluate clusters using test set.

Sample splitting cannot be used for example 2

Step 1: split observations into train/test.

Step 2: cluster the training set.

Step 2.5: assign
labels to observations in test set.

Step 3:

evaluate clusters using test set.

Sample splitting cannot be used for example 2

Step 1: split observations into train/test.

Step 2: cluster the training set.

Step 2.5: assign labels to observations in test set.

Step 3:

evaluate clusters using test set.

Other situations in which sample splitting is not a good option

1. Fixed -X regression settings.
2. Non-IID data.
3. Data with outliers or influential points.

Outline

1. Motivation: settings where sample splitting doesn't work
2. Poisson thinning
3. Data thinning
4. Application to single-cell RNA sequencing data
5. Ongoing work

Poisson thinning

X

	Feature 1	Feature 2
Obs. 1	18	6
Obs. 2	31	8
Obs. 3	11	31
Obs. 4	22	34

Poisson thinning

X

	Feature 1	Feature 2
Obs. 1	18	6
Obs. 2	31	8
Obs. 3	11	31
Obs. 4	22	34

$X^{(1)}$

	Feature 1	Feature 2
Obs. 1	14	1
Obs. 2	10	6
Obs. 3	5	17
Obs. 4	6	25
$\mathbf{X}^{(2)}$		
Obs. 1	4	5
Obs. 2	21	2
Obs. 3	6	14
Obs. 4	16	9

Poisson thinning

Poisson thinning

$X^{(1)}$						Fit model.					
X		$X_{i j}^{(1)} \mid X_{i j}=x_{i j} \sim \operatorname{Binomial}\left(x_{i j}, \epsilon\right)$			Feature 2						
	Feature 1				$\begin{array}{\|c\|} \hline 1 \\ \hline 6 \end{array}$						
Obs. 1											
Obs. 2	31	8	Obs. 3	5	17						
Obs. 3	11	31	Obs. 4	6	25						
Obs. 4	22	34									
If $X_{i j} \sim \operatorname{Poisson}\left(\Lambda_{i j}\right)$, then: 1. $X_{i j}^{(1)} \sim \operatorname{Poisson}\left(\epsilon \Lambda_{i j}\right)$ 2. $X_{i j}^{(2)} \sim \operatorname{Poisson}\left((1-\epsilon) \Lambda_{i j}\right)$ 3. $X_{i j}^{(2)} \Perp X_{i j}^{(2)}$			$X_{i j}^{(2)}:=X_{i j}-X_{i j}^{(1)}$ Feature 1 Feature 2 bs. 1 5								
			$X_{i j}^{(2)}:=X_{i j}-X_{i j}^{(1)}{\underset{\text { bs. } 2}{\text { bs. } 1}}^{\text {bin }}$	21.2							
			Obs. 3	6	14						
			Obs. 4	16	9						

A very well-known result.

Poisson thinning

A very well-known result.

Thinning avoids the pitfall of sample splitting on our motivating examples

Thinning avoids the pitfall of sample splitting on our motivating

 examples

Step 1: thin

 observations into train/test.
Thinning avoids the pitfall of sample splitting on our motivating

 examples

Step 1: thin

observations into train/test.

Thinning avoids the pitfall of sample splitting on our motivating

 examples

Step 1: thin

observations into train/test.

Thinning avoids the pitfall of sample splitting on our motivating

 examples

Step 1: thin

observations into train/test.

Thinning avoids the pitfall of sample splitting on our motivating

 examples

Step 1: thin

observations into train/test.

Thinning avoids the pitfall of sample splitting on our motivating

 examples

Step 1: thin

observations into train/test.

Thinning avoids the pitfall of sample splitting on our motivating

 examples

Step 1: thin

 observations into train/test.Step 2:
cluster the training set.

Thinning avoids the pitfall of sample splitting on our motivating

 examples

Step 1: thin

 observations into train/test.Step 2: cluster the training set.

Thinning avoids the pitfall of sample splitting on our motivating

 examples

Step 1: thin

 observations into train/test.
Step 2:

cluster the training set.

Thinning avoids the pitfall of sample splitting on our motivating

 examples

Step 1: thin

 observations into train/test.
Step 2:

 cluster the training set.Step 3: test for difference in means or evaluate clusters on test set.

Thinning avoids the pitfall of sample splitting on our motivating

 examples

Step 1: thin

 observations into train/test.
Step 2:

 cluster the training set.Step 3: test for difference in means or evaluate clusters on test set.

Thinning avoids the pitfall of sample splitting on our motivating

 examples

Step 1: thin observations into train/test.

Step 2:

 cluster the training set.

Step 3: test for difference in means or evaluate clusters on test set.

Thinning avoids the pitfall of sample splitting on our motivating

examples

Thinning avoids the pitfall of sample splitting on our motivating

 examples

$$
X_{i 2} \sim \begin{cases}\text { Poisson(3) } & \text { if } i \leq 50 \\ \text { Poisson(25) } & \text { if } i>50\end{cases}
$$

Thinning avoids the pitfall of sample splitting on our motivating

examples

$$
X_{i j}^{(1)} \mid X_{i j}=x_{i j} \sim \operatorname{Binomial}\left(x_{i j}, 0.5\right)
$$

$$
X_{i 2} \sim \begin{cases}\text { Poisson(3) } & \text { if } i \leq 50 \\ \text { Poisson(25) } & \text { if } i>50\end{cases}
$$

Thinning avoids the pitfall of sample splitting on our motivating

examples

$X_{i 2} \sim \begin{cases}\operatorname{Poisson}(3) & \text { if } i \leq 50 \\ \operatorname{Poisson(25)} & \text { if } i>50\end{cases}$

Thinning avoids the pitfall of sample splitting on our motivating

examples

$X_{i 2} \sim \begin{cases}\operatorname{Poisson}(3) & \text { if } i \leq 50 \\ \operatorname{Poisson(25)} & \text { if } i>50\end{cases}$

Thinning avoids the pitfall of sample splitting on our motivating

examples

$X_{i 2} \sim \begin{cases}\operatorname{Poisson}(3) & \text { if } i \leq 50 \\ \operatorname{Poisson(25)} & \text { if } i>50\end{cases}$

Thinning avoids the pitfall of sample splitting on our motivating

 examples
$X_{i 2} \sim \begin{cases}\text { Poisson(3) } & \text { if } i \leq 50 \\ \operatorname{Poisson(25)~} & \text { if } i>50\end{cases}$

Thinning avoids the pitfall of sample splitting on our motivating

 examples
$X_{i 2} \sim \begin{cases}\operatorname{Poisson}(3) & \text { if } i \leq 50 \\ \operatorname{Poisson(25)} & \text { if } i>50\end{cases}$

Thinning avoids the pitfall of sample splitting on our motivating

 examples
$X_{i 2} \sim \begin{cases}\operatorname{Poisson}(3) & \text { if } i \leq 50 \\ \operatorname{Poisson(25)} & \text { if } i>50\end{cases}$

Thinning avoids the pitfall of sample splitting on our motivating

 examples
$X_{i 2} \sim \begin{cases}\operatorname{Poisson}(3) & \text { if } i \leq 50 \\ \operatorname{Poisson(25)} & \text { if } i>50\end{cases}$

Thinning avoids the pitfall of sample splitting on our motivating examples

$$
X_{i 2} \sim \begin{cases}\text { Poisson(3) } & \text { if } i \leq 50 \\ \text { Poisson(25) } & \text { if } i>50\end{cases}
$$

Poisson thinning is useful in the analysis of single-cell RNA sequencing data

Eleven grand challenges in single-cell data science

David Lähnemann ${ }^{1,2,3}$, Johannes Köster ${ }^{1,4}$, Ewa Szczurek ${ }^{5}$, Davis J. McCarthy ${ }^{6,7}$, Stephanie C. Hicks ${ }^{8}$
Mark D. Robinson ${ }^{\text {(}}$ (, Catalina A. Vallejos ${ }^{10,11}$, Kieran R. Campbell ${ }^{12,13,14}$, Niko Beerenwinkel ${ }^{15,16,}$
Ahmed Mahfouz ${ }^{17,18}$, Luca Pinello ${ }^{19,20,21}$, Pavel Skums ${ }^{22}$, Alexandros Stamatakis ${ }^{23,24}$,
Camille Stephan-Otto Attolini ${ }^{25}$, Samuel Aparicio ${ }^{13,26}$, Jasmijn Baaijens ${ }^{27}$, Marleen Balvert ${ }^{27,28 \text {, }}$
Buys de Barbanson ${ }^{29,30,31}$, Antonio Cappuccio ${ }^{32}$, Giacomo Corleone ${ }^{33}$, Bas E. Dutilh ${ }^{28,34}$
Maria Florescu ${ }^{29,30,31}$, Victor Gurvev ${ }^{35}$, Rens Holmer ${ }^{36}$, Katharina Jahn ${ }^{15,16}$, Thamar Jessurun Lobo ${ }^{35}$

Emma M. Keizer ${ }^{37}$
Tzu-Hao Kuo ${ }^{3}$, Bou Tobias Marschall ${ }^{4}$ Jeroen de Ridder Fabian J. Theis ${ }^{54}$ Sohrab P. Shah ${ }^{59}$

Status

Currently, the vast majority of differential expression detection methods assume that the groups of cells to be compared are known in advance (e.g., experimental conditions or cell types). However, current analysis pipelines typically rely on clustering or cell type assignment to identify such groups, before downstream differential analysis is performed, without propagating the uncertainty in these assignments or accounting for the double use of data
(clustering, differential testing between clusters).

Poisson thinning is useful in the analysis of single-cell RNA sequencing data

Eleven grand challenges in single-cell data science

David Lähnemann ${ }^{1,2,3}$, Johannes Köster ${ }^{1,4}$, Ewa Szczurek ${ }^{5}$, Davis J. McCarthy ${ }^{6,7}$, Stephanie C. Hicks ${ }^{8}$
Mark D. Robinson ${ }^{\text {(}}$ (, Catalina A. Vallejos ${ }^{10,11}$, Kieran R. Campbell ${ }^{12,13,14}$, Niko Beerenwinkel ${ }^{15,16,}$
Ahmed Mahfouz ${ }^{17,18}$, Luca Pinello ${ }^{19,20,21}$, Pavel Skums ${ }^{22}$, Alexandros Stamatakis ${ }^{23,24}$,
Camille Stephan-Otto Attolini ${ }^{25}$, Samuel Aparicio ${ }^{13,26}$, Jasmijn Baaijens ${ }^{27}$, Marleen Balvert ${ }^{27,28 \text {, }}$
Buys de Barbanson ${ }^{29,30,31}$, Antonio Cappuccio ${ }^{32}$, Giacomo Corleone ${ }^{33}$, Bas E. Dutilh 28,34
Maria Florescu ${ }^{29,30,31}$, Victor Gurvev ${ }^{35}$, Rens Holmer ${ }^{36}$, Katharina Jahn ${ }^{15,16}$, Thamar Jessurun Lobo 35

Emma M. Keizer ${ }^{37}$
Tzu-Hao Kuo ${ }^{3}$, Bo Tobias Marschall ${ }^{47}$ Jeroen de Ridder ${ }^{2}$ Fabian J. Theis ${ }^{54}$ Sohrab P. Shah ${ }^{59}$

Status

Currently, the vast majority of differential expression detection methods assume that the groups of cells to be compared are known in advance (e.g., experimental conditions or cell types). However, current analysis pipelines typically rely on clustering or cell type assignment to identify such groups, before downstream differential analysis is performed, without propagating the uncertainty in these assignments or accounting for the double use of data (clustering, differential testing between clusters).

Project 2

Biostatistics (2022) 00, 00, pp. 1-18
http:://doi.org/10.1093/biostatistics/kxac047

Inference after latent variable estimation for single-cell

RNA sequencing data

ANNA NEUFELD*
Department of Statistics, University of Washington, Seattle, WA 98195, USA aneufeld@uw.edu
LUCY L. GAO
Department of Statistics, University of British Columbia, BC V6T 1Z4, Canada JOSHUA POPP
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA ALEXIS BATTLE
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA and Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA DANIELA WITTEN
Department of Statistics, University of Washington, Seattle, WA 98195, USA and Department of Biostatistics, University of Washington, Seattle, WA 98195, USA

$$
\begin{aligned}
& \begin{array}{l}
\text { R package and tutorials: } \\
\text { https://anna-neufeld.github.io/ } \\
\text { countsplit/ }
\end{array}
\end{aligned}
$$

But generalizations of Poisson thinning are needed

Choudhary and Satija Genome Biology (2022) 23:27
https://doi.org/10.1186/s13059-021-02584-9

Comparison and evaluation of statistical error models for scRNA-seq

Genome Biology

Results: Here, we analyze 59 scRNA-seq datasets that span a wide range of technologies, systems, and sequencing depths in order to evaluate the performance of different error models. We find that while a Poisson error model appears appropriate for sparse datasets, we observe clear evidence of overdispersion for genes with sufficient sequencing depth in all biological systems, necessitating the use of a negative binomial model. Moreover, we find that the degree of overdispersion varies widely across datasets, systems, and gene abundances, and argues for a data-driven approach for parameter estimation.

Outline

1. Motivation: settings where sample splitting doesn't work
2. Poisson thinning
3. Data thinning
4. Application to single-cell RNA sequencing data
5. Ongoing work

What did we like about Poisson thinning?

We split a single observation X into $X^{(1)}$ and $X^{(2)}$ such that:
(1) $X^{(1)}$ and $X^{(2)}$ have the same distribution as X, up to a parameter scaling.
$(2) X^{(1)} \Perp X^{(2)}$.

What did we like about Poisson thinning?

We split a single observation X into $X^{(1)}$ and $X^{(2)}$ such that:
(1) $X^{(1)}$ and $X^{(2)}$ have the same distribution as X, up to a parameter scaling.
$(2) X^{(1)} \Perp X^{(2)}$.

Can we achieve these same properties when X is not Poisson?

Data thinning

Goal: split a single observation X into $X^{(1)}$ and $X^{(2)}$ such that:
(1) $X^{(1)}$ and $X^{(2)}$ have the same distribution as X, up to a parameter scaling.
(2) $X^{(1)} \Perp X^{(2)}$.

Data thinning

Goal: split a single observation X into $X^{(1)}$ and $X^{(2)}$ such that:
(1) $X^{(1)}$ and $X^{(2)}$ have the same distribution as X, up to a parameter scaling.
$(2) X^{(1)} \Perp X^{(2)}$.

> J. Appl. Prob. 33, 664-677 (1996)
> Printed in Israel
> © Applied Probability Trust 1996

TIME SERIES MODELS WITH UNIVARIATE MARGINS IN THE CONVOLUTION-CLOSED INFINITELY DIVISIBLE CLASS

HARRY JOE,* University of British Columbia

Convolution-closed distributions

A family of distributions F_{λ} is "convolution-closed" in parameter λ if

- $X^{\prime} \sim F_{\lambda_{1}}$
- $X^{\prime \prime} \sim F_{\lambda_{2}}$
- $X^{\prime} \Perp X^{\prime \prime}$
together imply that $X^{\prime}+X^{\prime \prime} \sim F_{\lambda_{1}+\lambda_{2}}$.

Convolution-closed distributions

A family of distributions F_{λ} is "convolution-closed" in parameter λ if

- $X^{\prime} \sim F_{\lambda_{1}}$
- $X^{\prime \prime} \sim F_{\lambda}$
- $X^{\prime} \Perp X^{\prime \prime}$
together imply that $X^{\prime}+X^{\prime \prime} \sim F_{\lambda_{1}+\lambda_{2}}$.

Distribution	Convolution-closed in:
$X \sim \operatorname{Poisson}(\lambda)$	λ
$X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$	$\left(\mu, \sigma^{2}\right)$
$X \sim \operatorname{NegativeBinomial}(\mu, b)$	(μ, b)
$X \sim \operatorname{Gamma}(\alpha, \beta)$	α, if β is fixed
$X \sim \operatorname{Binomial}(r, p)$	r, if p is fixed
$X \sim \mathrm{~N}_{k}(\mu, \Sigma)$.	(μ, Σ).
$X \sim \operatorname{Multinomial}_{k}(r, p)$	r, if p is fixed
$X \sim \operatorname{Wishart}_{p}(n, \Sigma)$	n, if p and Σ are fixed..

Data thinning for convolution-closed distributions

Data thinning for convolution-closed distributions

We observe realization x from $X \sim F_{\lambda}$.

Data thinning for convolution-closed distributions

Data thinning for convolution-closed distributions

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Data thinning for convolution-closed distributions

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

Data thinning for convolution-closed distributions

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

Let $G_{\epsilon, x}$ be the conditional distribution of

$$
X^{\prime} \mid X=x
$$

Data thinning for convolution-closed distributions

We know x could have arisen as $x^{\prime}+x^{\prime \prime}$, where
$X^{\prime} \sim F_{\epsilon \lambda}, \quad X^{\prime \prime} \sim F_{(1-\epsilon) \lambda}, \quad X^{\prime} \Perp X^{\prime \prime}$.

Draw $X^{(1)}$ from $G_{\epsilon, x}$. Let $X^{(2)}:=X-X^{(1)}$.

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

Let $G_{\epsilon, x}$ be the conditional distribution of $X^{\prime} \mid X=x$.

Data thinning for convolution-closed distributions

We know x could have arisen as $x^{\prime}+x^{\prime \prime}$, where

$$
X^{\prime} \sim F_{\epsilon \lambda}, \quad X^{\prime \prime} \sim F_{(1-\epsilon) \lambda}, \quad X^{\prime} \Perp X^{\prime \prime}
$$

We observe realization x from $X \sim F_{\lambda}$.

Draw $X^{(1)}$ from $G_{\epsilon, x}$. Let $X^{(2)}:=X-X^{(1)}$.

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

Let $G_{\epsilon, x}$ be the conditional distribution of $X^{\prime} \mid X=x$.

Theorem:

```
X(1)}~\mp@subsup{F}{\epsilon\lambda}{},\mp@subsup{X}{}{(2)}~\mp@subsup{F}{(1-\epsilon)\lambda}{},\quad\mp@subsup{X}{}{(1)}\Perp\mp@subsup{X}{}{(2)}
```


Data thinning for the Poisson distribution

Data thinning for the Poisson distribution

We observe realization x from $X \sim \operatorname{Poisson}(\lambda)$.

Data thinning for the Poisson distribution

Data thinning for the Poisson distribution

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Data thinning for the Poisson distribution

We know x could have arisen as $x^{\prime}+x^{\prime \prime}$, where $X^{\prime} \sim \operatorname{Pois}(\epsilon \lambda), \quad X^{\prime \prime} \sim \operatorname{Pois}((1-\epsilon) \lambda), X^{\prime} \Perp X^{\prime \prime}$.

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

Data thinning for the Poisson distribution

We know x could have arisen as $x^{\prime}+x^{\prime \prime}$, where $X^{\prime} \sim \operatorname{Pois}(\epsilon \lambda), X^{\prime \prime} \sim \operatorname{Pois}((1-\epsilon) \lambda), X^{\prime} \Perp X^{\prime \prime}$.

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

The conditional distribution of $X^{\prime} \mid X=x$ is $\operatorname{Binomial}(x, \epsilon)$.

Data thinning for the Poisson distribution

We know x could have arisen as $x^{\prime}+x^{\prime \prime}$, where $X^{\prime} \sim \operatorname{Pois}(\epsilon \lambda), \quad X^{\prime \prime} \sim \operatorname{Pois}((1-\epsilon) \lambda), X^{\prime} \Perp X^{\prime \prime}$.

Draw $X^{(1)}$ from $\operatorname{Binomial}(x, \epsilon)$. Let $X^{(2)}:=X-X^{(1)}$.

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

The conditional distribution of $X^{\prime} \mid X=x$ is $\operatorname{Binomial}(x, \epsilon)$.

Data thinning for the Poisson distribution

We know x could have arisen as $x^{\prime}+x^{\prime \prime}$, where
$X^{\prime} \sim \operatorname{Pois}(\epsilon \lambda), \quad X^{\prime \prime} \sim \operatorname{Pois}((1-\epsilon) \lambda), X^{\prime} \Perp X^{\prime \prime}$.

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

The conditional distribution of $X^{\prime} \mid X=x$ is $\operatorname{Binomial}(x, \epsilon)$.

Theorem:

$X^{(1)} \sim \operatorname{Pois}(\epsilon \lambda), X^{(2)} \sim \operatorname{Pois}((1-\epsilon) \lambda), \quad X^{(1)} \Perp X^{(2)}$

Data thinning for the Poisson distribution

We know x could have arisen as $x^{\prime}+x^{\prime \prime}$, where
$X^{\prime} \sim \operatorname{Pois}(\epsilon \lambda), \quad X^{\prime \prime} \sim \operatorname{Pois}((1-\epsilon) \lambda), X^{\prime} \Perp X^{\prime \prime}$.

We observe realization x from $X \sim \operatorname{Poisson}(\lambda)$.

Draw $X^{(1)}$ from $\operatorname{Binomial}(x, \epsilon)$. Let $X^{(2)}:=X-X^{(1)}$.

Theorem:

$X^{(1)} \sim \operatorname{Pois}(\epsilon \lambda), X^{(2)} \sim \operatorname{Pois}((1-\epsilon) \lambda), \quad X^{(1)} \Perp X^{(2)}$

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

The conditional distribution of $X^{\prime} \mid X=x$ is $\operatorname{Binomial}(x, \epsilon)$.

We have recovered Poisson thinning!

Data thinning for the Gaussian distribution

Data thinning for the Gaussian distribution

We observe realization x from $X \sim N\left(\mu, \sigma^{2}\right)$.

Data thinning for the Gaussian distribution

Data thinning for the Gaussian distribution

We know x could have arisen as $x^{\prime}+x^{\prime \prime}$, where
$X^{\prime} \sim N\left(\epsilon \mu, \epsilon \sigma^{2}\right), X^{\prime \prime} \sim N\left((1-\epsilon) \mu,(1-\epsilon) \sigma^{2}\right), X^{\prime} \Perp X^{\prime \prime}$.

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Data thinning for the Gaussian distribution

We know x could have arisen as $x^{\prime}+x^{\prime \prime}$, where
$X^{\prime} \sim N\left(\epsilon \mu, \epsilon \sigma^{2}\right), X^{\prime \prime} \sim N\left((1-\epsilon) \mu,(1-\epsilon) \sigma^{2}\right), X^{\prime} \Perp X^{\prime \prime}$.

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

Data thinning for the Gaussian distribution

We know x could have arisen as $x^{\prime}+x^{\prime \prime}$, where
$X^{\prime} \sim N\left(\epsilon \mu, \epsilon \sigma^{2}\right), X^{\prime \prime} \sim N\left((1-\epsilon) \mu,(1-\epsilon) \sigma^{2}\right), X^{\prime} \Perp X^{\prime \prime}$.

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

The conditional distribution of $X^{\prime} \mid X=x$ is $\mathrm{N}\left(\epsilon x, \epsilon(1-\epsilon) \sigma^{2}\right)$.

Data thinning for the Gaussian distribution

We know x could have arisen as $x^{\prime}+x^{\prime \prime}$, where $X^{\prime} \sim N\left(\epsilon \mu, \epsilon \sigma^{2}\right), X^{\prime \prime} \sim N\left((1-\epsilon) \mu,(1-\epsilon) \sigma^{2}\right), X^{\prime} \Perp X^{\prime \prime}$.

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

The conditional distribution of $X^{\prime} \mid X=x$ is $\mathrm{N}\left(\epsilon x, \epsilon(1-\epsilon) \sigma^{2}\right)$.

Data thinning for the Gaussian distribution

We know x could have arisen as $x^{\prime}+x^{\prime \prime}$, where $X^{\prime} \sim N\left(\epsilon \mu, \epsilon \sigma^{2}\right), X^{\prime \prime} \sim N\left((1-\epsilon) \mu,(1-\epsilon) \sigma^{2}\right), X^{\prime} \Perp X^{\prime \prime}$.

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

The conditional distribution of $X^{\prime} \mid X=x$ is $\mathrm{N}\left(\epsilon x, \epsilon(1-\epsilon) \sigma^{2}\right)$.

Theorem:

$X^{(1)} \sim N\left(\epsilon \mu, \epsilon \sigma^{2}\right), X^{(2)} \sim N\left((1-\epsilon) \mu,(1-\epsilon) \sigma^{2}\right), X^{(1)} \Perp X^{(2)}$.

Data thinning for the Gaussian distribution

We know x could have arisen as $x^{\prime}+x^{\prime \prime}$, where $X^{\prime} \sim N\left(\epsilon \mu, \epsilon \sigma^{2}\right), X^{\prime \prime} \sim N\left((1-\epsilon) \mu,(1-\epsilon) \sigma^{2}\right), X^{\prime} \Perp X^{\prime \prime}$.

Theorem:

$X^{(1)} \sim N\left(\epsilon \mu, \epsilon \sigma^{2}\right), X^{(2)} \sim N\left((1-\epsilon) \mu,(1-\epsilon) \sigma^{2}\right), X^{(1)} \Perp X^{(2)}$

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

The conditional distribution of $X^{\prime} \mid X=x$ is $\mathrm{N}\left(\epsilon x, \epsilon(1-\epsilon) \sigma^{2}\right)$.

This is (similar to) a well-known result!

Data thinning recipe for the negative binomial distribution

Data thinning recipe for the negative binomial distribution

We observe realization x from $X \sim \mathrm{NB}(\mu, b)$.

Data thinning recipe for the negative binomial distribution

We know x could have arisen as $x^{\prime}+x^{\prime \prime}$, where $X^{\prime} \sim \mathrm{NB}(\epsilon \mu, \epsilon b), X^{\prime \prime} \sim \mathrm{NB}((1-\epsilon) \mu,(1-\epsilon) b), X^{\prime} \Perp X^{\prime \prime}$.

We observe realization x from $X \sim \mathrm{NB}(\mu, b)$.

Data thinning recipe for the negative binomial distribution

We know x could have arisen as $x^{\prime}+x^{\prime \prime}$, where
$X^{\prime} \sim \mathrm{NB}(\epsilon \mu, \epsilon b), X^{\prime \prime} \sim \mathrm{NB}((1-\epsilon) \mu,(1-\epsilon) b), X^{\prime} \Perp X^{\prime \prime}$.

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Data thinning recipe for the negative binomial distribution

We know x could have arisen as $x^{\prime}+x^{\prime \prime}$, where
$X^{\prime} \sim \mathrm{NB}(\epsilon \mu, \epsilon b), X^{\prime \prime} \sim \mathrm{NB}((1-\epsilon) \mu,(1-\epsilon) b), X^{\prime} \Perp X^{\prime \prime}$.

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

Data thinning recipe for the negative binomial distribution

We know x could have arisen as $x^{\prime}+x^{\prime \prime}$, where $X^{\prime} \sim \mathrm{NB}(\epsilon \mu, \epsilon b), X^{\prime \prime} \sim \mathrm{NB}((1-\epsilon) \mu,(1-\epsilon) b), X^{\prime} \Perp X^{\prime \prime}$.

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

The conditional distribution of $X^{\prime} \mid X=x$ is $\operatorname{BetaBinomial}(x, \epsilon b,(1-\epsilon) b)$.

Data thinning recipe for the negative binomial distribution

We know x could have arisen as $x^{\prime}+x^{\prime \prime}$, where $X^{\prime} \sim \mathrm{NB}(\epsilon \mu, \epsilon b), X^{\prime \prime} \sim \mathrm{NB}((1-\epsilon) \mu,(1-\epsilon) b), X^{\prime} \Perp X^{\prime \prime}$.

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

The conditional distribution of $X^{\prime} \mid X=x$ is $\operatorname{BetaBinomial}(x, \epsilon b,(1-\epsilon) b)$.

Data thinning recipe for the negative binomial distribution

We know x could have arisen as $x^{\prime}+x^{\prime \prime}$, where $X^{\prime} \sim \mathrm{NB}(\epsilon \mu, \epsilon b), X^{\prime \prime} \sim \mathrm{NB}((1-\epsilon) \mu,(1-\epsilon) b), X^{\prime} \Perp X^{\prime \prime}$.

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

The conditional distribution of $X^{\prime} \mid X=x$ is $\operatorname{BetaBinomial}(x, \epsilon b,(1-\epsilon) b)$.

Theorem:

$X^{(1)} \sim \mathrm{NB}(\epsilon \mu, \epsilon b), X^{(2)} \sim \mathrm{NB}((1-\epsilon) \mu,(1-\epsilon) b), X^{(1)} \Perp X^{(2)}$

Data thinning recipe for the negative binomial distribution

We know x could have arisen as $x^{\prime}+x^{\prime \prime}$, where $X^{\prime} \sim \mathrm{NB}(\epsilon \mu, \epsilon b), X^{\prime \prime} \sim \mathrm{NB}((1-\epsilon) \mu,(1-\epsilon) b), X^{\prime} \Perp X^{\prime \prime}$.

If we had observed x^{\prime} and $x^{\prime \prime}$, we would have satisfied our goal of data thinning!

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

The conditional distribution of $X^{\prime} \mid X=x$ is $\operatorname{BetaBinomial}(x, \epsilon b,(1-\epsilon) b)$.

Theorem:

$X^{(1)} \sim \mathrm{NB}(\epsilon \mu, \epsilon b), X^{(2)} \sim \mathrm{NB}((1-\epsilon) \mu,(1-\epsilon) b), X^{(1)} \Perp X^{(2)}$

For many common distributions, the distribution $G_{\epsilon, x}$ has a simple form

Distribution of $X:$	Draw $X^{(1)} \mid X=x$ from	Distribution of $X^{(1)}:$
	$G_{\epsilon, x}$, where $G_{\epsilon, x}$ is:	Distribution of $X^{(2)}$,
	$\operatorname{Binomial}(x, \epsilon)$	Poisson $(\epsilon \lambda)$

For many common distributions, the distribution $G_{\epsilon, x}$ has a simple form

Distribution of $X:$	Draw $X^{(1)} \mid X=x$ from	Distribution of $X^{(1)}:$
	$G_{\epsilon, x}$, where $G_{\epsilon, x}$ is:	
Poisson (λ)	$\operatorname{Binomial}(x, \epsilon)$	Poisson $(\epsilon \lambda)$
	where $X^{(2)}=X-X^{(1)}:$	

Related work on Poisson thinning:

- Sarkar and Stephens, 2021, Nature Genetics.
- Chen et al., 2021, arXiv:2108.03336
- Leiner et al., 2021, arXiv:2112.11079.
- Neufeld et al., 2022, Biostatistics.
- Oliveira, Lei, and Tibshirani, 2022, arXiv:2212.01943.

For many common distributions, the distribution $G_{\epsilon, x}$ has a simple form

Distribution of $X:$	Draw $X^{(1)} \mid X=x$ from	Distribution of $X^{(1)}:$
	$G_{\epsilon, x}$, where $G_{\epsilon, x}$ is:	
Poisson (λ)	$\operatorname{Binomial}(x, \epsilon)$	Distribution of $X^{(2)}$,
$\mathrm{N}\left(\mu, \sigma^{2}\right)$	$\mathrm{N}\left(\epsilon x, \epsilon(1-\epsilon) \sigma^{2}\right)$	$\mathrm{N}\left(\epsilon \mu, \epsilon \sigma^{2}\right)$
		where $X^{(2)}=X-X^{(1)}:$
		Poisson $((1-\epsilon) \lambda)$
		$\mathrm{N}\left((1-\epsilon) \mu,(1-\epsilon) \sigma^{2}\right)$

For many common distributions, the distribution $G_{\epsilon, x}$ has a simple form

Distribution of $X:$	Draw $X^{(1)} \mid X=x$ from	Distribution of $X^{(1)}:$
	$G_{\epsilon, x}$, where $G_{\epsilon, x}$ is:	
Poisson (λ)	$\operatorname{Binomial}(x, \epsilon)$	Poisson $(\epsilon \lambda)$
$\mathrm{N}\left(\mu, \sigma^{2}\right)$	$\mathrm{N}\left(\epsilon x, \epsilon(1-\epsilon) \sigma^{2}\right)$	$\mathrm{N}\left(\epsilon \mu, \epsilon \sigma^{2}\right)$
		where $X^{(2)}=X-X^{(1)}:$

Related work on Gaussian thinning:

- Tian and Taylor, 2018, Annals of Statistics.
- Tian, 2020, Annals of Statistics.
- Rasines and Young, 2022, Biometrika.
- Leiner et al., 2022, arXiv:2112.11079.
- Oliveira, Lei, and Tibshirani, 2022, arXiv:2111.09447.

For many common distributions, the distribution $G_{\epsilon, x}$ has a simple form

Distribution of $X:$	Draw $X^{(1)} \mid X=x$ from	Distribution of $X^{(1)}:$
	$G_{\epsilon, x}$, where $G_{\epsilon, x}$ is:	Distribution of $X^{(2)}$,
Poisson (λ)	$\operatorname{Binomial}(x, \epsilon)$	Poisson $(\epsilon \lambda)$
$\mathrm{N}\left(\mu, \sigma^{2}\right)$	$\mathrm{N}\left(\epsilon x, \epsilon(1-\epsilon) \sigma^{2}\right)$	$\mathrm{N}\left(\epsilon \mu, \epsilon \sigma^{2}\right)$
NegativeBinomial (μ, b)	$\operatorname{BetaBinomial}(x, \epsilon b,(1-\epsilon) b)$.	NegativeBinomial $(\epsilon \mu, \epsilon b)$
		Poisson $((1-\epsilon) \lambda)$

For many common distributions, the distribution $G_{\epsilon, x}$ has a simple form

Distribution of X :	Draw $X^{(1)} \mid X=x$ from $G_{\epsilon, x}$, where $G_{\epsilon, x}$ is:	Distribution of $X^{(1)}$:	Distribution of $X^{(2)}$, where $X^{(2)}=X-X^{(1)}$:
Poisson(λ)	$\operatorname{Binomial}(x, \epsilon)$	Poisson($\epsilon \lambda$)	Poisson $((1-\epsilon) \lambda)$
$\mathrm{N}\left(\mu, \sigma^{2}\right)$	$\mathrm{N}\left(\epsilon x, \epsilon(1-\epsilon) \sigma^{2}\right)$	$\mathrm{N}\left(\epsilon \mu, \epsilon \sigma^{2}\right)$	$\mathrm{N}\left((1-\epsilon) \mu,(1-\epsilon) \sigma^{2}\right)$
$\operatorname{NegativeBinomial~}(\mu, b)$	$\operatorname{BetaBinomial}(x, \epsilon b,(1-\epsilon) b)$.	NegativeBinomial $(\epsilon \mu, \epsilon b)$	NegativeBinomial $((1-\epsilon) \mu,(1-\epsilon) b)$
$\operatorname{Binomial}(r, p)$	Hypergeometric $(\epsilon r,(1-\epsilon) r, x)$.	$\operatorname{Binomial}(\epsilon r, p)$	$\operatorname{Binomial}((1-\epsilon) r, p)$
$\operatorname{Gamma}(\alpha, \beta)$	$x \cdot \operatorname{Beta}(\epsilon \alpha,(1-\epsilon) \alpha)$.	$\operatorname{Gamma}(\epsilon \alpha, \beta)$	$\operatorname{Gamma}((1-\epsilon) \alpha, \beta)$
Exponential (λ)	$x \cdot \operatorname{Beta}(\epsilon,(1-\epsilon))$.	$\operatorname{Gamma}(\epsilon, \lambda)$	$\operatorname{Gamma}(1-\epsilon, \lambda)$
$\mathrm{N}_{k}(\mu, \Sigma)$	$\mathrm{N}(\epsilon x, \epsilon(1-\epsilon) \Sigma)$.	$\mathrm{N}_{k}(\epsilon \mu, \epsilon \Sigma)$	$\mathrm{N}_{k}((1-\epsilon) \mu,(1-\epsilon) \Sigma)$
$\operatorname{Multinomial~}_{k}(r, p)$	MultivarHypergeom $\left(x_{1}, \ldots, x_{K}, \epsilon r\right)$	$\mathrm{Multinom}_{k}(\epsilon r, p)$	Multinomial $_{k}((1-\epsilon) r, p)$
$\operatorname{Wishart}_{p}(n, \Sigma)$.	$\begin{aligned} & x^{1 / 2} Z x^{1 / 2}, \text { where } . \\ & Z \sim \operatorname{MatrixBeta}_{p}(\epsilon n / 2,(1-\epsilon) n / 2) \end{aligned}$	$\mathrm{Wishart}_{p}(\epsilon n, \Sigma)$	$\mathrm{Wishart}_{p}((1-\epsilon) n, \Sigma)$

What if we get a nuisance parameter wrong?

```
Negative binomial thinning algorithm
Suppose X~\operatorname{NegBin}(\mu,b).
Draw
X(1)~\operatorname{BetaBinomial(x, \epsilonb,(1-\epsilon)b),}
X (2)}=X-\mp@subsup{X}{}{(1)}\mathrm{ , then:
1) }\mp@subsup{X}{}{(1)}~\operatorname{NegBin}(\epsilon\mu,\epsilonb)
2) }\mp@subsup{X}{}{(2)}~\operatorname{NegBin}((1-\epsilon)\mu,(1-\epsilon)b
3) }\mp@subsup{X}{}{(1)}\Perp\mp@subsup{X}{}{(2)}\mathrm{ .
```


What if we get a nuisance parameter wrong?

```
Negative binomial thinning algorithm
Suppose X~\operatorname{NegBin}(\mu,b).
Draw
X(1)}~\operatorname{BetaBinomial}(x,\epsilon\tilde{b},(1-\epsilon)\tilde{b})
X (2)}=X-\mp@subsup{X}{}{(1)}\mathrm{ , then:
1) }\mp@subsup{X}{}{(1)}~\operatorname{NegBin}(\epsilon\mu,\epsilonb)
2) }\mp@subsup{X}{}{(2)}~\operatorname{NegBin}((1-\epsilon)\mu,(1-\epsilon)b
3) }\mp@subsup{X}{}{(1)}\Perp\mp@subsup{X}{}{(2)}\mathrm{ .
```


What if we get a nuisance parameter wrong?

> Negative binomial thinning algorithm
> Suppose $X \sim \operatorname{NegBin}(\mu, b)$.
> Draw
> $X^{(1)} \sim \operatorname{BetaBinomial}(x, \epsilon \tilde{b},(1-\epsilon) \tilde{b})$,
> $X^{(2)}=X-X^{(1)}$, then:
> 1) $Y^{(1)} \sim$ NegBin $(c \mu, c b)$.
> 2) $V^{(2)}, ~ N e g D i n((1-c) \mu,(1-c) b)$
> 万) $\Lambda^{(1)} \Perp V^{(2)}$.

What if we get a nuisance parameter wrong?

\quad Negative binomial thinning algorithm
Suppose $X \sim \operatorname{NegBin}(\mu, b)$.
Draw
$X^{(1)} \sim \operatorname{BetaBinomial}(x, \epsilon \tilde{b},(1-\epsilon) \tilde{b})$,
$X^{(2)}=X-X^{(1)}$, then:

1) $\mathrm{E}\left[X^{(1)}\right]=\epsilon \mu$.
2) $\mathrm{E}\left[X^{(2)}\right]=(1-\epsilon) \mu$
3) $\operatorname{Cov}\left(X^{(1)}, X^{(2)}\right)=\epsilon(1-\epsilon) \frac{\mu^{2}}{b}\left(1-\frac{b+1}{\tilde{b}+1}\right)$.

What if we get a nuisance parameter wrong?

Negative binomial thinning algorithm

Suppose $X \sim \operatorname{NegBin}(\mu, b)$.
Draw
$X^{(1)} \sim \operatorname{BetaBinomial}(x, \epsilon \tilde{b},(1-\epsilon) \tilde{b})$,
$X^{(2)}=X-X^{(1)}$, then:

1) $\mathrm{E}\left[X^{(1)}\right]=\epsilon \mu$.
2) $\mathrm{E}\left[X^{(2)}\right]=(1-\epsilon) \mu$
3) $\operatorname{Cov}\left(X^{(1)}, X^{(2)}\right)=\epsilon(1-\epsilon) \frac{\mu^{2}}{b}\left(1-\frac{b+1}{\tilde{b}+1}\right)$.

What if we get a nuisance parameter wrong?

Negative binomial thinning algorithm

Suppose $X \sim \operatorname{NegBin}(\mu, b)$.
Draw
$X^{(1)} \sim \operatorname{BetaBinomial}(x, \epsilon \tilde{b},(1-\epsilon) \tilde{b})$,
$X^{(2)}=X-X^{(1)}$, then:

1) $\mathrm{E}\left[X^{(1)}\right]=\epsilon \mu$.
2) $\mathrm{E}\left[X^{(2)}\right]=(1-\epsilon) \mu$
3) $\operatorname{Cov}\left(X^{(1)}, X^{(2)}\right)=\epsilon(1-\epsilon) \frac{\mu^{2}}{b}\left(1-\frac{b+1}{\tilde{b}+1}\right)$.

What if we get a nuisance parameter wrong?

Negative binomial thinning algorithm

Suppose $X \sim \operatorname{NegBin}(\mu, b)$.
Draw
$X^{(1)} \sim \operatorname{BetaBinomial}(x, \epsilon \tilde{b},(1-\epsilon) \tilde{b})$,
$X^{(2)}=X-X^{(1)}$, then:

1) $\mathrm{E}\left[X^{(1)}\right]=\epsilon \mu$.
2) $\mathrm{E}\left[X^{(2)}\right]=(1-\epsilon) \mu$
3) $\operatorname{Cov}\left(X^{(1)}, X^{(2)}\right)=\epsilon(1-\epsilon) \frac{\mu^{2}}{b}\left(1-\frac{b+1}{\tilde{b}+1}\right)$.

Similar results can be derived for other decompositions.

The parameter ϵ governs an information tradeoff

Gaussian thinning algorithm

Suppose $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$.
Draw
$X^{(1)} \sim \mathrm{N}\left(\epsilon x, \epsilon(1-\epsilon) \sigma^{2}\right)$ and
$X^{(2)}=X-X^{(1)}$.
Then:

1) $X^{(1)} \sim \mathrm{N}\left(\epsilon \mu, \epsilon \sigma^{2}\right)$
2) $X^{(2)} \sim \mathrm{N}\left((1-\epsilon) \mu,(1-\epsilon) \sigma^{2}\right)$
3) $X^{(1)} \Perp X^{(2)}$.

The parameter ϵ governs an information tradeoff

Gaussian thinning algorithm

Suppose $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$.
Draw
$X^{(1)} \sim \mathrm{N}\left(\epsilon x, \epsilon(1-\epsilon) \sigma^{2}\right)$ and
$X^{(2)}=X-X^{(1)}$.
Then:

1) $X^{(1)} \sim \mathrm{N}\left(\epsilon \mu, \epsilon \sigma^{2}\right)$
2) $X^{(2)} \sim \mathrm{N}\left((1-\epsilon) \mu,(1-\epsilon) \sigma^{2}\right)$
3) $X^{(1)} \Perp X^{(2)}$.

Theorem: If we data thin with
parameter ϵ, the Fisher information in X about μ is divided between $X^{(1)}$ and $X^{(2)}$ with proportions ϵ and $1-\epsilon$.

The parameter ϵ governs an information tradeoff

Gaussian thinning algorithm

Suppose $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$.
Draw
$X^{(1)} \sim \mathrm{N}\left(\epsilon x, \epsilon(1-\epsilon) \sigma^{2}\right)$ and
$X^{(2)}=X-X^{(1)}$.
Then:

1) $X^{(1)} \sim \mathrm{N}\left(\epsilon \mu, \epsilon \sigma^{2}\right)$
2) $X^{(2)} \sim \mathrm{N}\left((1-\epsilon) \mu,(1-\epsilon) \sigma^{2}\right)$
3) $X^{(1)} \Perp X^{(2)}$.

Theorem: If we data thin with
parameter ϵ, the Fisher information in X about μ is divided between $X^{(1)}$ and $X^{(2)}$ with proportions ϵ and $1-\epsilon$.

Similar results can be derived for other decompositions.

Our recipe extends naturally to splitting into $\mathrm{M}>2$ folds

Our recipe extends naturally to splitting into $\mathrm{M}>2$ folds

Goal: split a single observation X into $\left(X^{(1)}, \ldots, X^{(M)}\right)$ such that:
(1) Each $X^{(m)}$ has the same distribution as X, up to a parameter scaling.
(2) The $X^{(m)}$ are mutually independent.

Our recipe extends naturally to splitting into $\mathrm{M}>2$ folds

Distribution of X	Draw $\left(X^{(1)}, \ldots, X^{(M)}\right) \mid X=x$ from:	Distribution of $X^{(m)}$
$\operatorname{Poisson}(\lambda)$	$\operatorname{Multinomial}\left(x, \epsilon_{1}, \ldots, \epsilon_{M}\right)$	$\operatorname{Poisson}\left(\epsilon_{m} \lambda\right)$

Goal: split a single observation X into $\left(X^{(1)}, \ldots, X^{(M)}\right)$ such that:
(1) Each $X^{(m)}$ has the same distribution as X, up to a parameter scaling.
(2) The $X^{(m)}$ are mutually independent.

Our recipe extends naturally to splitting into $\mathrm{M}>2$ folds

Distribution of X	Draw $\left(X^{(1)}, \ldots, X^{(M)}\right) \mid X=x$ from:	Distribution of $X^{(m)}$
$\operatorname{Poisson}(\lambda)$	$\operatorname{Multinomial}\left(x, \epsilon_{1}, \ldots, \epsilon_{M}\right)$	$\operatorname{Poisson}\left(\epsilon_{m} \lambda\right)$

Our recipe extends naturally to splitting into $\mathrm{M}>2$ folds

Distribution of X	Draw $\left(X^{(1)}, \ldots, X^{(M)}\right) \mid X=x$ from:	Distribution of $X^{(m)}$
Poisson (λ)	Multinomial $\left(x, \epsilon_{1}, \ldots, \epsilon_{M}\right)$	Poisson $\left(\epsilon_{m} \lambda\right)$
$\mathrm{N}\left(\mu, \sigma^{2}\right)$	$\mathrm{N}_{M}\left(\epsilon \mu, \sigma^{2} \operatorname{diag}(\epsilon)-\sigma^{2} \epsilon \epsilon^{T}\right)$.	$\mathrm{N}\left(\epsilon_{m} \mu, \epsilon_{m} \sigma^{2}\right)$

Our recipe extends naturally to splitting into $\mathrm{M}>2$ folds

Distribution of X	Draw $\left(X^{(1)}, \ldots, X^{(M)}\right) \mid X=x$ from:	Distribution of $X^{(m)}$
Poisson (λ)	Multinomial $\left(x, \epsilon_{1}, \ldots, \epsilon_{M}\right)$	Poisson $\left(\epsilon_{m} \lambda\right)$
$\mathrm{N}\left(\mu, \sigma^{2}\right)$	$\mathrm{N}_{M}\left(\epsilon \mu, \sigma^{2} \operatorname{diag}(\epsilon)-\sigma^{2} \epsilon \epsilon^{T}\right)$.	$\mathrm{N}\left(\epsilon_{m} \mu, \epsilon_{m} \sigma^{2}\right)$
NegativeBinomial (μ, b)	DirichletMultinomial $\left(x, \epsilon_{1} b, \ldots, \epsilon_{M} b\right)$.	NegativeBinomial $\left(\epsilon_{m} \mu, \epsilon_{m} b\right)$

Our recipe extends naturally to splitting into $\mathrm{M}>2$ folds

Distribution of X	Draw $\left(X^{(1)}, \ldots, X^{(M)}\right) \mid X=x$ from:	Distribution of $X^{(m)}$
Poisson (λ)	$\operatorname{Multinomial}\left(x, \epsilon_{1}, \ldots, \epsilon_{M}\right)$	Poisson $\left(\epsilon_{m} \lambda\right)$
$\mathrm{N}\left(\mu, \sigma^{2}\right)$	$\mathrm{N}_{M}\left(\epsilon \mu, \sigma^{2} \operatorname{diag}(\epsilon)-\sigma^{2} \epsilon \epsilon^{T}\right)$.	$\mathrm{N}\left(\epsilon_{m} \mu, \epsilon_{m} \sigma^{2}\right)$
$\operatorname{NegativeBinomial}(\mu, b)$	$\operatorname{DirichletMultinomial}\left(x, \epsilon_{1} b, \ldots, \epsilon_{M} b\right)$.	$\operatorname{NegativeBinomial}\left(\epsilon_{m} \mu, \epsilon_{m} b\right)$
$\operatorname{Gamma}(\alpha, \beta)$	$x \cdot \operatorname{Dirichlet}\left(\epsilon_{1} \alpha, \ldots, \epsilon_{M} \alpha\right)$	$\operatorname{Gamma}\left(\epsilon_{m} \alpha, \beta\right)$
$\operatorname{Exponential}(\lambda)$	$x \cdot \operatorname{Dirichlet}\left(\epsilon_{1}, \ldots, \epsilon_{M}\right)$	$\operatorname{Gamma}\left(\epsilon_{m}, \lambda\right)$
$\operatorname{Binomial}(r, p)$	MultivariateHypergeometric $\left(\epsilon_{1} r, \ldots, \epsilon_{M} r, x\right)$.	$\operatorname{Binomial}\left(\epsilon_{m} r, p\right)$

Data thinning is a simple alternative to sample splitting that can be used in a variety of settings

Project 3

arXiv > stat > axXiv2301.07276

Statistics > Methodology

[Submitted on 18 Jan 2023]

Data thinning for convolution-closed distributions

Anna Neufeld, Ameer Dharamshi, Lucy L. Gao, Daniela Witten
We propose data thinning, a new approach for splitting an observation into two or more independent parts that sum to the original observation, and that follow the same distribution as the original observation, up to a (known) scaling of a parameter This proposal is very general, and can be applied to any observation drawn from a "convolution closed" distribution, a class that includes the Gaussian, Poisson, negative binomial, Gamma, and binomial distributions, among others. It is similar in spirit to -but distinct from, and more easily applicable than -- a recent proposal known as data fission. Data thinning has a number of applications to model selection, evaluation, and inference. For instance, cross-validation via data thinning provides an attractive alternative to the "usual" approach of cross-validation via sample splitting, especially in unsupervised settings in which the latter is not applicable. In simulations and in an application to single-cell RNA-sequencing data, we show that data thinning can be used to validate the results of unsupervised learning approaches, such as k-means clustering and principal components analysis

Outline

1. Motivation: settings where sample splitting doesn't work
2. Poisson thinning
3. Data thinning
4. Application to single-cell RNA sequencing data
5. Ongoing work

How can we validate the results of clustering?

RESEARCH ARTICLE

HUMAN GENOMICS

A human cell atlas of fetal gene expression

Junyue Cao ${ }^{1 *}$, Diana R. O'Day ${ }^{2}$, Hannah A. Pliner ${ }^{3}$, Paul D. Kingsley ${ }^{4}$, Mei Deng ${ }^{2}$, Riza M. Daza ${ }^{1}$, Michael A. Zage ${ }^{3,5}$, Kimberly A. Aldinger ${ }^{2,6}$, Ronnie Blecher-Gonen', Fan Zhang', Malte Spielmann ${ }^{8,9}$, James Palis ${ }^{4}$, Dan Doherty ${ }^{2,3,6}$, Frank J. Steemers, Ian A. Glass ${ }^{2,3,6}$, Cole Trapnell ${ }^{1,3,10}+$, Jay Shendure ${ }^{1,3,10,11}+$

How can we validate the results of clustering?

RESEARCH ARTICLE

HUMAN GENOMICS

A human cell atlas of fetal gene expression

Junyue Cao ${ }^{1 *}$, Diana R. O'Day ${ }^{2}$, Hannah A. Pliner ${ }^{3}$, Paul D. Kingsley ${ }^{4}$, Mei Deng ${ }^{2}$, Riza M. Daza ${ }^{1}$, Michael A. Zager ${ }^{3,5}$, Kimberly A. Aldinger ${ }^{2,6}$, Ronnie Blecher-Gonen ${ }^{1}$, Fan Zhang ${ }^{7}$, Malte Spielmann ${ }^{8,9}$, James Palis ${ }^{4}$, Dan Doherty ${ }^{2,3,6}$, Frank J. Steemers ${ }^{7}$, Ian A. Glass ${ }^{2,3,6}$, Cole Trapnell ${ }^{1,3,10} \dagger$, Jay Shendure ${ }^{1,3,10,11} \dagger$

How can we validate the results of clustering?

RESEARCH ARTICLE

HUMAN GENOMICS

A human cell atlas of fetal gene expression

Junyue Cao ${ }^{1 *}$, Diana R. O'Day ${ }^{2}$, Hannah A. Pliner ${ }^{3}$, Paul D. Kingsley ${ }^{4}$, Mei Deng ${ }^{2}$, Riza M. Daza ${ }^{1}$, Michael A. Zager ${ }^{3,5}$, Kimberly A. Aldinger ${ }^{2,6}$, Ronnie Blecher-Gonen ${ }^{1}$, Fan Zhang ${ }^{7}$, Malte Spielmann ${ }^{8,9}$, James Palis ${ }^{4}$, Dan Doherty ${ }^{2,3,6}$, Frank J. Steemers', Ian A. Glass ${ }^{2,3,6}$, Cole Trapnell ${ }^{1,3,10} \dagger$, Jay Shendure ${ }^{1,3,10,11}+$

- Step 1: Cluster cells.

How can we validate the results of clustering?

RESEARCH ARTICLE

HUMAN GENOMICS

A human cell atlas of fetal gene expression

Junyue Cao ${ }^{1 *}$, Diana R. O'Day ${ }^{2}$, Hannah A. Pliner ${ }^{3}$, Paul D. Kingsley ${ }^{4}$, Mei Deng ${ }^{2}$, Riza M. Daza ${ }^{1}$, Michael A. Zager ${ }^{3,5}$, Kimberly A. Aldinger ${ }^{2,6}$, Ronnie Blecher-Gonen ${ }^{1}$, Fan Zhang ${ }^{7}$, Malte Spielmann ${ }^{8,9}$, James Palis ${ }^{4}$, Dan Doherty ${ }^{2,3,6}$, Frank J. Steemers', Ian A. Glass ${ }^{2,3,6}$, Cole Trapnell ${ }^{1,3,10} \dagger$, Jay Shendure ${ }^{1,3,10,11}+$

- Step 1: Cluster cells.

How can we validate the results of clustering?

RESEARCH ARTICLE

HUMAN GENOMICS

A human cell atlas of fetal gene expression

Junyue Cao ${ }^{1 *}$, Diana R. O'Day ${ }^{2}$, Hannah A. Pliner ${ }^{3}$, Paul D. Kingsley ${ }^{4}$, Mei Deng ${ }^{2}$, Riza M. Daza ${ }^{1}$, Michael A. Zager ${ }^{3,5}$, Kimberly A. Aldinger ${ }^{2,6}$, Ronnie Blecher-Gonen ${ }^{1}$, Fan Zhang ${ }^{7}$, Malte Spielmann ${ }^{8,9}$, James Palis ${ }^{4}$, Dan Doherty ${ }^{2,3,6}$, Frank J. Steemers ${ }^{7}$, Ian A. Glass ${ }^{2,3,6}$, Cole Trapnell ${ }^{1,3,10} \dagger$, Jay Shendure ${ }^{1,3,10,11} \dagger$

- Step 1: Cluster cells.
- Step 2: Treat clusters as truth. Do 5-fold cross validation with SVM.

How can we validate the results of clustering?

RESEARCH ARTICLE

HUMAN GENOMICS

A human cell atlas of fetal gene expression

Junyue Cao ${ }^{1 *}$, Diana R. O'Day ${ }^{2}$, Hannah A. Pliner ${ }^{3}$, Paul D. Kingsley ${ }^{4}$, Mei Deng ${ }^{2}$, Riza M. Daza ${ }^{1}$, Michael A. Zager ${ }^{3,5}$, Kimberly A. Aldinger ${ }^{2,6}$, Ronnie Blecher-Gonen ${ }^{1}$, Fan Zhang ${ }^{7}$, Malte Spielmann ${ }^{8,9}$, James Palis ${ }^{4}$, Dan Doherty ${ }^{2,3,6}$, Frank J. Steemers ${ }^{7}$, Ian A. Glass ${ }^{2,3,6}$, Cole Trapnell ${ }^{1,3,10} \dagger$, Jay Shendure ${ }^{1,3,10,11} \dagger$

- Step 1: Cluster cells.
- Step 2: Treat clusters as truth. Do 5-fold cross validation with SVM.

How can we validate the results of clustering?

RESEARCH ARTICLE

HUMAN GENOMICS

A human cell atlas of fetal gene expression

Junyue Cao ${ }^{1 *}$, Diana R. O'Day ${ }^{2}$, Hannah A. Pliner ${ }^{3}$, Paul D. Kingsley ${ }^{4}$, Mei Deng ${ }^{2}$, Riza M. Daza ${ }^{1}$, Michael A. Zager ${ }^{3,5}$, Kimberly A. Aldinger ${ }^{2,6}$, Ronnie Blecher-Gonen ${ }^{1}$, Fan Zhang ${ }^{7}$, Malte Spielmann ${ }^{8,9}$, James Palis ${ }^{4}$, Dan Doherty ${ }^{2,3,6}$, Frank J. Steemers ${ }^{7}$, lan A. Glass ${ }^{2,3,6}$, Cole Trapnell ${ }^{1,3,10} \dagger$, Jay Shendure ${ }^{1,3,10,11} \dagger$

- Step 1: Cluster cells.
- Step 2: Treat clusters as truth. Do 5-fold cross validation with SVM.
- Step 3: Compare clusters to SVM predictions.

How can we validate the results of clustering?

RESEARCH ARTICLE

HUMAN GENOMICS

A human cell atlas of fetal gene expression

Junyue Cao ${ }^{1 *}$, Diana R. O'Day ${ }^{2}$, Hannah A. Pliner ${ }^{3}$, Paul D. Kingsley ${ }^{4}$, Mei Deng ${ }^{2}$, Riza M. Daza ${ }^{1}$, Michael A. Zager ${ }^{3,5}$, Kimberly A. Aldinger ${ }^{2,6}$, Ronnie Blecher-Gonen ${ }^{1}$, Fan Zhang ${ }^{7}$, Malte Spielmann ${ }^{8,9}$, James Palis ${ }^{4}$, Dan Doherty ${ }^{2,3,6}$, Frank J. Steemers ${ }^{7}$, Ian A. Glass ${ }^{2,3,6}$, Cole Trapnell ${ }^{1,3,10} \dagger$, Jay Shendure ${ }^{1,3,10,11} \dagger$

- Step 1: Cluster cells.
- Step 2: Treat clusters as truth. Do 5-fold cross validation with SVM.
- Step 3: Compare clusters to SVM predictions.

This cross validation procedure double dips

This cross validation procedure double dips

This cross validation procedure double dips

Proportion of cells in column belonging to row 1.00
0.75
0.50
0.25
0.00

Cluster estimated with k-means
SVM gets 96\% accuracy on test set, despite the fact that clusters are not "real".

Data thinning provides a simple alternative

Adjusted Rand Index ≈ 0.01

Re-analysis of Kidney cell data from fetal cell atlas

Re-analysis of Kidney cell data from fetal cell atlas

Intradataset cross validation

Re-analysis of Kidney cell data from fetal cell atlas

Proportion of cells in column belonging to row

Re-analysis of Kidney cell data from fetal cell atlas

Proportion of cells in column belonging to row

0.75

0.50
0.25
0.00

Re-analysis of Kidney cell data from fetal cell atlas

Proportion of cells in column belonging to row

Re-analysis of Kidney cell data from fetal cell atlas

Proportion of cells in column belonging to row

Re-analysis of Kidney cell data from fetal cell atlas

Data thinning

Proportion of cells in column belonging to row

Re-analysis of Kidney cell data from fetal cell atlas

Data thinning

Proportion of cells in column belonging to row
0.75
0.50
0.25
0.00

Re-analysis of Kidney cell data from fetal cell atlas

Data thinning

Proportion of cells in column belonging to row
0.75
0.50
0.25
0.00

Re-analysis of Kidney cell data from fetal cell atlas

Data thinning

Proportion of cells in column belonging to row
0.75
0.50
0.25
0.00

Re-analysis of Kidney cell data from fetal cell atlas

Data thinning

Proportion of cells in column belonging to row
0.75
0.50
0.25
0.00

Negative binomial data thinning is useful in the analysis of single-cell

 RNA sequencing data
Project 4

Negative binomial count splitting
for single cell RNA sequencing data

Anna Neufeld, Lucy Gao, Josh Popp, Alexis Battle, Daniela Witten

Arxiv preprint will be posted soon!

Outline

1. Motivation: settings where sample splitting doesn't work
2. Poisson thinning
3. Data thinning
4. Application to single-cell RNA sequencing data
5. Ongoing work

Three ways to avoid double dipping

1. Specialized methods, such as selective inference.
2. Sample splitting.
3. Data thinning.

Three ways to avoid double dipping

1. Specialized methods, such as selective inference.

Requires a bespoke solution for every problem at hand.
2. Sample splitting.
3. Data thinning.

Three ways to avoid double dipping

1. Specialized methods, such as selective inference.

Requires a bespoke solution for every problem at hand.
2. Sample splitting.

Super flexible!
3. Data thinning.

Three ways to avoid double dipping

1. Specialized methods, such as selective inference.

Requires a bespoke solution for every problem at hand.
2. Sample splitting.

Super flexible!
Not an option in some unsupervised settings; unsatisfying in other settings.
3. Data thinning.

Three ways to avoid double dipping

1. Specialized methods, such as selective inference.

Requires a bespoke solution for every problem at hand.
2. Sample splitting.

Super flexible!
Not an option in some unsupervised settings; unsatisfying in other settings.
3. Data thinning.

No bespoke solutions needed; works in supervised and unsupervised settings.

Three ways to avoid double dipping

1. Specialized methods, such as selective inference.

Requires a bespoke solution for every problem at hand.

2. Sample splitting.

Super flexible!
Not an option in some unsupervised settings; unsatisfying in other settings.

3. Data thinning.

No bespoke solutions needed; works in supervised and unsupervised settings.
Requires distributional assumptions and knowledge of nuisance parameters.

Three ways to avoid double dipping

1. Specialized methods, such as selective inference.

Requires a bespoke solution for every problem at hand.

2. Sample splitting.

Super flexible!
Not an option in some unsupervised settings; unsatisfying in other settings.

3. Data thinning.

No bespoke solutions needed; works in supervised and unsupervised settings.
Requires distributional assumptions and knowledge of nuisance parameters.
Limited to convolution-closed distributions?

Revisiting the goals of data thinning

Goal: split a single observation X into $X^{(1)}$ and $X^{(2)}$ such that:
(1) $X^{(1)}$ and $X^{(2)}$ have the same distribution as X, up to a parameter scaling.
(2) $X^{(1)} \Perp X^{(2)}$.

Revisiting the goals of data thinning

Goal: split a single observation X into $X^{(1)}$ and $X^{(2)}$ such that:
(1) $X^{(1)}$ and $X^{(2)}$ have the same distribution as X, up to a parameter scaling. $(2) X^{(1)} \Perp X^{(2)}$.

In our previous recipe:
(3) $X=X^{(1)}+X^{(2)}$.

Revisiting the goals of data thinning

Goal: split a single observation X into $X^{(1)}$ and $X^{(2)}$ such that:
(1) $X^{(1)}$ and $X^{(2)}$ have the same distribution as X, up to a parameter scaling. $(2) X^{(1)} \Perp X^{(2)}$.

In our previous recipe:
(3) $M-X^{(1)} \div Y^{(2)}$.

Revisiting the goals of data thinning

Goal: split a single observation X into $X^{(1)}$ and $X^{(2)}$ such that:
(1) $X^{(1)}$ and $X^{(2)}$ have the same distribution as X, up to a parameter scaling. (2) $X^{(1)} \Perp X^{(2)}$.

In our previous recipe:
(J) $\mathrm{Y}-\mathrm{K}(1) \div \mathrm{V}(2)$. (3) $X=T\left(X^{(1)}, X^{(2)}\right)$.

Revisiting the goals of data thinning

Goal: split a single observation X into $X^{(1)}$ and $X^{(2)}$ such that:
(1) $V^{(1)}$ and $V^{(2)}$ have the samo-distribution as Y, up to a paramotor scaling.
(2) $X^{(1)} \Perp X^{(2)}$.

In our previous recipe:

$$
\text { (J) } Y-Y^{(1)}+Y^{(2)} . \text { (3) } X=T\left(X^{(1)}, X^{(2)}\right)
$$

Generalized thinning with non-additive decompositions

Generalized thinning with non-additive decompositions

We observe realization x from $X \sim P_{\theta}$.

Generalized thinning with non-additive decompositions

Generalized thinning with non-additive decompositions

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

Generalized thinning with non-additive decompositions

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

Let $G_{x, \theta}$ be the conditional distribution of $\left(X^{\prime}, X^{\prime \prime}\right) \mid X=x$.

Generalized thinning with non-additive decompositions

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

Let $G_{x, \theta}$ be the conditional distribution of $\left(X^{\prime}, X^{\prime}\right) \mid X=x$.

Generalized thinning with non-additive decompositions

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

Let $G_{x, \theta}$ be the conditional distribution of

$$
\left(X^{\prime}, X^{\prime \prime}\right) \mid X=x
$$

Theorem:

$$
X^{(1)} \sim Q_{\theta}^{1}, \quad X^{(2)} \sim Q_{\theta}^{2}, \quad X^{(1)} \Perp X^{(2)}
$$

Generalized thinning with non-additive decompositions

Theorem:

Can we work backwards to recover

$$
x^{\prime} \text { and } x^{\prime \prime} ?
$$

Let $G_{x, \theta}$ be the conditional distribution of

$$
\left(X^{\prime}, X^{\prime \prime}\right) \mid X=x
$$

Key idea: If $X=T\left(X^{\prime}, X^{\prime \prime}\right)$ is sufficient for θ in the joint of $\left(X^{\prime}, X^{\prime \prime}\right)$, then $G_{x, \theta}$ does not depend on θ.

The list of distributions we can thin is extensive

Family	Distribution P_{θ}, where $X \sim P_{\theta}$.	$\begin{gathered} \text { Distribution } Q_{\theta}^{(k)} \\ \text { where } X^{(k)} \stackrel{\text { ind. }}{\sim} Q_{\theta}^{(k)} . \end{gathered}$	Sufficient statistic T (sufficient for θ)
Naturalexponentialfamily(in parameter θ)	$\begin{gathered} N\left(\theta, \sigma^{2}\right) \\ \operatorname{Poisson}(\theta) \\ \operatorname{NegBin}(r, \theta) \\ \operatorname{Binomial}(r, \theta) \\ \operatorname{Gamma}(\alpha, \theta) \\ \mathrm{N}_{p}(\boldsymbol{\theta}, \Sigma) \\ \operatorname{Multinomial}_{p}(r, \boldsymbol{\theta}) \end{gathered}$	$\begin{gathered} \mathrm{N}\left(\epsilon_{k} \theta, \epsilon_{k} \sigma^{2}\right) \\ \operatorname{Poisson}\left(\epsilon_{k} \theta\right) \\ \operatorname{NegBin}\left(\epsilon_{k} r, \theta\right) \\ \operatorname{Binomial}\left(\epsilon_{k} r, \theta\right) \\ \operatorname{Gamma}\left(\epsilon_{k} \alpha, \theta\right) \\ N_{p}\left(\epsilon_{k} \boldsymbol{\theta}, \epsilon_{k} \Sigma\right) \\ \text { Multinomial }_{p}\left(\epsilon_{k} r, \boldsymbol{\theta}\right) \end{gathered}$	$\sum_{k=1}^{K} X^{(k)}$
	$\begin{gathered} \operatorname{Gamma}(K / 2, \theta) \\ \operatorname{Gamma}(K, \theta) \end{gathered}$	$\begin{gathered} N\left(0, \frac{1}{2 \theta}\right) \\ \text { Weibull }\left(\theta^{-\frac{1}{\nu}}, \nu\right) \end{gathered}$	$\begin{aligned} & \sum_{k=1}^{K}\left(X^{(k)}\right)^{2} \\ & \sum_{k=1}^{K}\left(X^{(k)}\right)^{\nu} \end{aligned}$
General exponential family (in parameter θ)	$\begin{gathered} \operatorname{Beta}(\theta, \beta) \\ \operatorname{Beta}(\alpha, \theta) \\ \operatorname{Gamma}(\theta, \beta) \\ \operatorname{Weibull}(\theta, \nu) \\ \operatorname{Pareto}(\nu, \theta) \end{gathered}$	$\begin{gathered} \operatorname{Beta}\left(\frac{1}{K} \theta+\frac{k-1}{K}, \frac{1}{K} \beta\right) \\ \operatorname{Beta}\left(\frac{1}{K} \alpha, \frac{1}{K} \theta+\frac{k-1}{K}\right) \\ \operatorname{Gamma}\left(\frac{1}{K} \theta+\frac{k-1}{K}, \frac{1}{K} \beta\right) \\ \operatorname{Gamma}\left(\frac{1}{K}, \theta^{-\nu}\right) \\ \operatorname{Gamma}\left(\frac{1}{K}, \theta\right) \end{gathered}$	$\begin{gathered} \left(\Pi_{k=1}^{K} X^{(k)}\right)^{1 / K} \\ \left(\Pi_{k=1}^{K}\left(1-X^{(k)}\right)\right)^{1 / K} \\ \left(\Pi_{k=1}^{K} X^{(k)}\right)^{1 / K} \\ \left(\sum_{k=1}^{K} X^{(k)}\right)^{1 / \nu} \\ \nu \times \operatorname{Exp}\left(\sum_{k=1}^{K} X^{(k)}\right) \end{gathered}$
	$\begin{gathered} \mathrm{N}(0, \theta) \\ \mathrm{N}_{K}\left(\theta_{1} 1_{K}, \theta_{2} I_{K}\right) \end{gathered}$	$\begin{gathered} \operatorname{Gamma}\left(\frac{1}{2 K}, \frac{1}{2 \theta}\right) \\ N\left(\theta_{1}, \theta_{2}\right) \end{gathered}$	$X^{2}=\sum_{k=1}^{K} X^{(k)}$ sample mean and variance
Truncated support family	$\begin{gathered} \operatorname{Unif}(0, \theta) \\ \theta \cdot \operatorname{Beta}(\alpha, 1) \end{gathered}$	$\begin{aligned} & \theta \cdot \operatorname{Beta}\left(\frac{1}{K}, 1\right) \\ & \theta \cdot \operatorname{Beta}\left(\frac{\alpha}{K}, 1\right) \end{aligned}$	$\max \left(X^{(1)}, \ldots, X^{(K)}\right)$
	$\theta+\operatorname{Exp}(\lambda)$	$\theta+\operatorname{Exp}(\lambda / \mathrm{K})$	$\min \left(X^{(1)}, \ldots, X^{(K)}\right)$
Non-parametric	F^{n}	$F^{n_{k}}$	$\operatorname{sort}\left(X^{(1)}, \ldots, X^{(K)}\right)$

The list of distributions we can thin is extensive

Family	Distribution P_{θ}, where $X \sim P_{\theta}$.	$\begin{gathered} \text { Distribution } Q_{\theta}^{(k)} \\ \text { where } X^{(k)} \stackrel{\text { ind. }}{\sim} Q_{\theta}^{(k)} . \end{gathered}$	Sufficient statistic T (sufficient for θ)
$\begin{gathered} \text { Natural } \\ \text { exponential } \\ \text { family } \\ \text { (in parameter } \theta \text {) } \end{gathered}$	$\begin{gathered} N\left(\theta, \sigma^{2}\right) \\ \operatorname{Poisson}(\theta) \\ \operatorname{NegBin}(r, \theta) \\ \operatorname{Binomial}(r, \theta) \\ \operatorname{Gamma}(\alpha, \theta) \\ \mathrm{N}_{p}(\boldsymbol{\theta}, \Sigma) \\ \operatorname{Multinomial}_{p}(r, \boldsymbol{\theta}) \end{gathered}$	$\begin{gathered} \mathrm{N}\left(\epsilon_{k} \theta, \epsilon_{k} \sigma^{2}\right) \\ \operatorname{Poisson}\left(\epsilon_{k} \theta\right) \\ \operatorname{NegBin}\left(\epsilon_{k} r, \theta\right) \\ \operatorname{Binomial}\left(\epsilon_{k} r, \theta\right) \\ \operatorname{Gamma}\left(\epsilon_{k} \alpha, \theta\right) \\ N_{p}\left(\epsilon_{k} \boldsymbol{\theta}, \epsilon_{k} \Sigma\right) \\ \text { Multinomial }{ }_{p}\left(\epsilon_{k} r, \boldsymbol{\theta}\right) \end{gathered}$	$\sum_{k=1}^{K} X^{(k)}$
	$\begin{gathered} \operatorname{Gamma}(K / 2, \theta) \\ \operatorname{Gamma}(K, \theta) \end{gathered}$	$\begin{gathered} N\left(0, \frac{1}{2 \theta}\right) \\ \text { Weibull }\left(\theta^{-\frac{1}{\nu}}, \nu\right) \end{gathered}$	$\begin{aligned} & \sum_{k=1}^{K}\left(X^{(k)}\right)^{2} \\ & \sum_{k=1}^{K}\left(X^{(k)}\right)^{\nu} \end{aligned}$
General exponential family (in parameter θ)	$\begin{gathered} \operatorname{Beta}(\theta, \beta) \\ \operatorname{Beta}(\alpha, \theta) \\ \operatorname{Gamma}(\theta, \beta) \\ \operatorname{Weibull}(\theta, \nu) \\ \operatorname{Pareto}(\nu, \theta) \end{gathered}$	$\begin{gathered} \operatorname{Beta}\left(\frac{1}{K} \theta+\frac{k-1}{K}, \frac{1}{K} \beta\right) \\ \operatorname{Beta}\left(\frac{1}{K} \alpha, \frac{1}{K} \theta+\frac{k-1}{K}\right) \\ \operatorname{Gamma}\left(\frac{1}{K} \theta+\frac{k-1}{K}, \frac{1}{K} \beta\right) \\ \operatorname{Gamma}\left(\frac{1}{K}, \theta^{-\nu}\right) \\ \operatorname{Gamma}\left(\frac{1}{K}, \theta\right) \end{gathered}$	$\begin{gathered} \left(\Pi_{k=1}^{K} X^{(k)}\right)^{1 / K} \\ \left(\Pi_{k=1}^{K}\left(1-X^{(k)}\right)\right)^{1 / K} \\ \left(\Pi_{k=1}^{K} X^{(k)}\right)^{1 / K} \\ \left(\sum_{k=1}^{K} X^{(k)}\right)^{1 / \nu} \\ \nu \times \operatorname{Exp}\left(\sum_{k=1}^{K} X^{(k)}\right) \end{gathered}$
	$\begin{gathered} \mathrm{N}(0, \theta) \\ \mathrm{N}_{K}\left(\theta_{1} 1_{K}, \theta_{2} I_{K}\right) \\ \hline \end{gathered}$	$\begin{gathered} \operatorname{Gamma}\left(\frac{1}{2 K}, \frac{1}{2 \theta}\right) \\ N\left(\theta_{1}, \theta_{2}\right) \end{gathered}$	$X^{2}=\sum_{k=1}^{K} X^{(k)}$ sample mean and variance
Truncated support family	$\begin{gathered} \operatorname{Unif}(0, \theta) \\ \theta \cdot \operatorname{Beta}(\alpha, 1) \end{gathered}$	$\begin{aligned} & \theta \cdot \operatorname{Beta}\left(\frac{1}{K}, 1\right) \\ & \theta \cdot \operatorname{Beta}\left(\frac{\alpha}{K}, 1\right) \end{aligned}$	$\max \left(X^{(1)}, \ldots, X^{(K)}\right)$
	$\theta+\operatorname{Exp}(\lambda)$	$\theta+\operatorname{Exp}(\lambda / \mathrm{K})$	$\min \left(X^{(1)}, \ldots, X^{(K)}\right)$
Non-parametric	F^{n}	$F^{n_{k}}$	$\operatorname{sort}\left(X^{(1)}, \ldots, X^{(K)}\right)$

The list of distributions we can thin is extensive

Family	Distribution P_{θ}, where $X \sim P_{\theta}$.	$\begin{gathered} \text { Distribution } Q_{\theta}^{(k)} \\ \text { where } X^{(k)} \stackrel{i n d .}{\sim} Q_{\theta}^{(k)} . \end{gathered}$	Sufficient statistic T (sufficient for θ)
Naturalexponentialfamily(in parameter θ)	$\begin{gathered} N\left(\theta, \sigma^{2}\right) \\ \operatorname{Poisson}(\theta) \\ \operatorname{NegBin}(r, \theta) \\ \operatorname{Binomial}(r, \theta) \\ \operatorname{Gamma}(\alpha, \theta) \\ \mathrm{N}_{p}(\boldsymbol{\theta}, \Sigma) \\ \operatorname{Multinomial}_{p}(r, \boldsymbol{\theta}) \end{gathered}$	$\begin{gathered} \mathrm{N}\left(\epsilon_{k} \theta, \epsilon_{k} \sigma^{2}\right) \\ \operatorname{Poisson}\left(\epsilon_{k} \theta\right) \\ \operatorname{NegBin}\left(\epsilon_{k} r, \theta\right) \\ \operatorname{Binomial}\left(\epsilon_{k} r, \theta\right) \\ \operatorname{Gamma}\left(\epsilon_{k} \alpha, \theta\right) \\ N_{p}\left(\epsilon_{k} \boldsymbol{\theta}, \epsilon_{k} \Sigma\right) \\ \text { Multinomial }_{p}\left(\epsilon_{k} r, \boldsymbol{\theta}\right) \end{gathered}$	$\sum_{k=1}^{K} X^{(k)}$
	$\operatorname{Gamma}(K / 2, \theta)$ $\operatorname{Gamma}(K, \theta)$	$\begin{gathered} N\left(0, \frac{1}{2 \theta}\right) \\ \text { Weibull }\left(\theta^{-\frac{1}{\nu}}, \nu\right) \end{gathered}$	$\begin{aligned} & \sum_{k=1}^{K}\left(X^{(k)}\right)^{2} \\ & \sum_{k=1}^{K}\left(X^{(k)}\right)^{\nu} \end{aligned}$
General exponential family (in parameter θ)	$\begin{aligned} & \operatorname{Beta}(\theta, \beta) \\ & \operatorname{Beta}(\alpha, \theta) \end{aligned}$	$\operatorname{Beta}\left(\frac{1}{K} \theta+\frac{k-1}{K}, \frac{1}{K} \beta\right)$ $\operatorname{Beta}\left(\frac{1}{K} \alpha, \frac{1}{K} \theta+\frac{k-1}{K}\right)$	$\begin{gathered} \left(\Pi_{k=1}^{K} X^{(k)}\right)^{1 / K} \\ \left(\Pi_{k=1}^{K}\left(1-X^{(k)}\right)\right)^{1 / K} \end{gathered}$
	$\begin{aligned} & \operatorname{Gamma}(\theta, \beta) \\ & \text { Weibull }(\theta, \nu) \\ & \operatorname{Pareto}(\nu, \theta) \end{aligned}$	$\begin{gathered} \operatorname{Gamma}\left(\frac{1}{K} \theta+\frac{\kappa-1}{K}, \frac{1}{K} \beta\right) \\ \operatorname{Gamma}\left(\frac{1}{K}, \theta^{-\nu}\right) \\ \operatorname{Gamma}\left(\frac{1}{K}, \theta\right) \end{gathered}$	$\begin{gathered} \left(\Pi_{k=1}^{K} X^{(k)}\right)^{1 / \nu} \\ \left(\sum_{k=1}^{K} X^{(k)}\right)^{1 / \nu} \\ \nu \times \operatorname{Exp}\left(\sum_{k=1}^{K} X^{(k)}\right) \end{gathered}$
	$\begin{gathered} \mathrm{N}(0, \theta) \\ \mathrm{N}_{K}\left(\theta_{1} 1_{K}, \theta_{2} I_{K}\right) \end{gathered}$	$\begin{gathered} \operatorname{Gamma}\left(\frac{1}{2 K}, \frac{1}{2 \theta}\right) \\ N\left(\theta_{1}, \theta_{2}\right) \end{gathered}$	$X^{2}=\sum_{k=1}^{K} X^{(k)}$ sample mean and variance
Truncated support family	$\begin{gathered} \operatorname{Unif}(0, \theta) \\ \theta \cdot \operatorname{Beta}(\alpha, 1) \end{gathered}$	$\begin{aligned} & \theta \cdot \operatorname{Beta}\left(\frac{1}{K}, 1\right) \\ & \theta \cdot \operatorname{Beta}\left(\frac{\alpha}{K}, 1\right) \end{aligned}$	$\max \left(X^{(1)}, \ldots, X^{(K)}\right)$
	$\theta+\operatorname{Exp}(\lambda)$	$\theta+\operatorname{Exp}(\lambda / \mathrm{K})$	$\min \left(X^{(1)}, \ldots, X^{(K)}\right)$
Non-parametric	F^{n}	$F^{n_{k}}$	$\operatorname{sort}\left(X^{(1)}, \ldots, X^{(K)}\right)$

We are working on additional extensions to Project 3

こ IKiV > stat > arXiv:2303.12931
Statistics > Methodology
[Submitted on 22 Mar 2023]

Generalized Data Thinning Using Sufficient Statistics

Ameer Dharamshi, Anna Neufeld, Keshav Motwani, Lucy L. Gao, Daniela Witten, Jacob Bien

Acknowledgements

Acknowledgements

Daniela Witten
University of Washington

Acknowledgements

Daniela Witten
University of Washington

Lucy Gao
University of British Columbia

Acknowledgements

Daniela Witten
University of Washington

Lucy Gao
University of British Columbia

Alexis Battle Johns Hopkins

Joshua Popp Johns Hopkins

Acknowledgements

Daniela Witten University of Washington

Lucy Gao
University of British Columbia

Ameer Dharamshi University of Washington

Alexis Battle Johns Hopkins

Joshua Popp Johns Hopkins

Acknowledgements

Daniela Witten University of Washington

Lucy Gao
University of British Columbia

Ameer Dharamshi University of Washington

Keshav Motwani University of Washington

Alexis Battle Johns Hopkins

Joshua Popp Johns Hopkins

Jacob Bien
USC

Questions?

