Compute selective confidence interval for parameter v^T mu based on a truncated normal distribution. A slight modification of code found in the Outference package, available at https://github.com/shuxiaoc/outference. This function shouldn't be needed by most users (it is called internally by branchInference), but is needed to reproduce our paper simulations.

computeCI(v, y, sigma = NULL, truncation, alpha = 0.05)

Arguments

v

the vector that defines the parameter of interest; v^T mu

y

the observed response vector

sigma

The known noise standard deviation. If unknown, we recommend a conservative estimate. If it is left blank, we automatically use a conservative estimate.

truncation,

the truncation set for the statistic v'y. Computes a confidence interval for the mean of a truncated normal distribution.

alpha,

the significance level.

Value

This function returns a vector of lower and upper confidence limits.

Examples

data(blsdata, package="treevalues") bls.tree <- rpart::rpart(kcal24h0~hunger+disinhibition+resteating+rrvfood+liking+wanting, model = TRUE, data = blsdata, cp=0.02) branch <- getBranch(bls.tree, 2) full_result <- branchInference(bls.tree, branch, type="sib") left_child <- getRegion(bls.tree,2) right_child <- getRegion(bls.tree,3) nu_sib <- left_child/sum(left_child) - right_child/sum(right_child) S_sib <- getInterval(bls.tree, nu_sib,branch) computeCI(nu_sib, blsdata$kcal24h0, sd(blsdata$kcal24h0),S_sib)
#> [1] -1255.5306 340.1185
full_result$confint
#> [1] -1255.5306 340.1185